關燈 巨大 直達底部
親,雙擊螢幕即可自動滾動
第3部分

。因此在廣義相對論中沒有普適的慣性參考系。時空連續體變得坑窪不平,而位置和速度只能相對於這樣的時空來確定。所有的參考系,無論是慣性系與否,只要我們知道如何從一個參考系正確地過渡到另一個,就能用來描述自然定律。從這個意義上講,愛因斯坦引力理論的名稱是取錯了,因為廣義相對論的相對性比狹義相對論是減小了。

由於一個均勻引力場能由一個加速來消除或代替,並且反之亦然,一個在這個場中下落的物體就不受任何力(人之沒有落向地心是因為他腳下地面壓力的阻擋)。恆定引力場中的自由下落因而就是物體的“自然”運動。對宇宙中任何一個足夠小的區域而言,引力的變化不大,則自由下落運動定義出一個局域慣性參考系,其中的物理定律取其最簡單的形式,即由狹義相對論所給出的形式。狹義相對論並沒有被完全拋棄,它是被包括到一個更廣泛的理論中,而仍保持在一定範圍內的適用性。

宇宙高爾夫球場

我們今天都知道時空是彎曲的,可是這個奇怪而又迷人的陳述究竟是什麼意思呢?

雙生子佯謬很好地描繪了狹義相對論時空的剛性結構如何使空間和時間由於觀測者的運動而各自改變(收縮或延緩)。廣義相對論則完全變革了我們的宇宙觀,它斷言引力會使整個時空變形。

如果在一個給定點上直接的引力效應已被消除,我們仍能測量相鄰兩點之間的微分效應。在一個纜繩已斷掉的電梯裡,兩個“自由”物體的軌跡在一級近似上是平行的,但實際上兩條軌跡線將在6400公里遠處的地心相交,因此兩軌跡之間就有一個相對加速度(因為它們相互在靠近),對應著一個微分引力場。

顯示直接引力與微分引力之間區別的一個鮮明事例是海洋潮汐的幅度。雖然太陽對地球表面的直接引力比月亮的強180倍,太陽潮卻比月亮潮弱得多。這是因為潮汐並不是由直接引力造成,而是由太陽和月亮對地球上不同點的引力的差異造成。對月亮來說這種差異是6%,而對太陽則只有1.7%。

牛頓理論把微分引力效應稱作潮汐力。在太陽系裡潮汐力是很弱的,而黑洞所產生的潮汐力卻能把整個恆星撕碎。然而對廣義相對論來說,用潮汐力來描述微分引力是完全多餘的,因為這不是一種力學效應而純粹是一種幾何效應。為理解這一點,且看兩隻開始時沿平行路線滾動且相隔不遠的高爾夫球(圖8)。如果地面完全平坦,它們的軌跡將保持平行,否則它們的相對位置就會改變,一個鼓包會使它們離遠,一個凹坑則會使它們靠攏。在宇宙高爾夫球場裡,微分引力可以用時空“場地”的彎曲來表示。而且,由於引力總是吸引,這種彎曲就總是凹下而不是隆起。

因此,時空彎曲的深刻含義是指由等效原理所造就的引力與幾何之間的聯絡。物體不是在引力迫使下在“平直”時空中運動,而是沿著彎曲時空的恆值線自由地行進。

彎曲幾何

上帝以彎曲來顯平直。

——共濟會思想象(1782)

“彎曲”是一個日常用詞。三維空間裡的歐幾里德幾何允許我們講一維的曲線和二維的曲面。圓是一個一維幾何圖形(只有長度,沒有寬度和深度),其半徑越短,則彎曲程度越大。反之,如果半徑增至無限長,圓就變成了直線,失去了彎曲性。同樣地,一個球面隨其半徑的無限增長也會變成一個平面(若不計地面的粗糙,則在局域尺度上看地球表面是平的)。

彎曲因而是有精確的幾何定義的。但當維數增加時,定義變得複雜多了,彎曲程度不能再像圓的情況那樣用一個數來描述,而必須講“曲率”。且看一個簡單情況即圓柱面,這是一個二維曲面(圖約,平行於其對稱軸所量度的曲率為零,而在垂直方向上的曲率則與截出的那個圓相等。

儘管曲率有多重性,仍然可以定義出一個固有曲率。在二維面上的每一個點都可以量出兩個相互垂直方向上的彎曲半徑,二者乘積的倒數就是曲面的固有曲率。如果兩個彎曲半徑是在曲面的同一側,固有曲率就是正的;如果是在兩側,那就是負的。圓柱面的固有曲率為零,事實上它可以被切開平攤在桌面上而不會被扯破,而對一個球面就不可能這樣做。

球面、圓柱面及其他任意二維曲面都“包理”在三維歐幾里德空間裡。這種來自現實生活的具體形象使我們覺得可以區分“內部”和“外部”,並且常說是一個面在空間裡彎曲。但是,在純粹的幾何學裡,一個二維曲面的性質可以不需要關於包含空間的任何知識而完全確定,更高