1948年,科學家喬治·伽莫夫和他的學生拉夫·阿爾法在合寫的一篇著名的論文中,第一次提出了宇宙的熱的早期階段的影象。伽莫夫頗有幽默——他說服了核物理學家漢斯·貝特將他的名字加到這論文上面,使得列名作者為“阿爾法、貝特、伽莫夫”,正如希臘字母的前三個:阿爾法、貝他、伽瑪,這特別適合於一篇關於宇宙開初的論文!他們在此論文中作出了一個驚人的預言:宇宙的熱的早期階段的輻射(以光子的形式)今天還應在周圍存在,但是其溫度已被降低到只比絕對零度(一273℃)高几度。這正是彭齊亞斯和威爾遜在1965年發現的輻射。在阿爾法、貝特和伽莫夫寫此論文時,對於質子和中子的核反應瞭解得不多。所以對於早期宇宙不同元素比例所作的預言相當不準確,但是,在用更好的知識重新進行這些計算之後,現在已和我們的觀測符合得非常好。況且,在解釋宇宙為何應該有這麼多氦時,用任何其他方法都是非常困難的。所以,我們相當確信,至少一直回溯到大爆炸後大約一秒鐘為止,這個影象是正確無誤的。
大爆炸後的幾個鐘頭之內,氦和其他元素的產生就停止了。之後的100萬年左右,宇宙僅僅只是繼續膨脹,沒有發生什麼事。最後,一旦溫度降低到幾千度,電子和核子不再有足夠能量去抵抗它們之間的電磁吸引力,它們就開始結合形成原子。宇宙作為整體,繼續膨脹變冷,但在一個略比平均更密集的區域,膨脹就會由於額外的引力吸引而慢下來。在一些區域膨脹會最終停止並開始坍縮。當它們坍縮時,在這些區域外的物體的引力拉力使它們開始很慢地旋轉;當坍縮的區域變得更小,它會自轉得更快——正如在冰上自轉的滑冰者,縮回手臂時會自轉得更快;最終,當這些區域變得足夠小,自轉的速度就足以平衡引力的吸引,碟狀的旋轉星系就以這種方式誕生了。另外一些區域剛好沒有得到旋轉,就形成了叫做橢圓星系的橢球狀物體。這些區域之所以停止坍縮是因為星系的個別部分穩定地繞著它的中心旋轉,但星系整體並沒有旋轉。
隨著時間流逝,星系中的氫和氦氣體被分割成更小的星雲,它們在自身引力下坍縮。當它們收縮時,其中的原子相碰撞,氣體溫度升高,直到最後,熱得足以開始熱驟變反應。這些反應將更多的氫轉變成氦,釋放出的熱升高了壓力,因此使星雲不再繼續收縮。正如同我們的太陽一樣,它們將氫燃燒成氦,並將得到的能量以熱和光的形式輻射出來。它們會穩定地在這種狀態下停留一段很長的時間。質量更大的恆星需要變得更熱,以去平衡它們更強的引力,使得其核聚變反應進行得極快,以至於它們在1億年這麼短的時間裡將氫用光。然後,它們會稍微收縮一點。當它們進一步變熱,就開始將氦轉變成像碳和氧這樣更重的元素。但是,這一過程沒有釋放出太多的能量,所以正如在黑洞那一章 描述的,危機就會發生了。人們不完全清楚下面還會發生什麼,但是看來恆星的中心區域會坍縮成一個非常緊緻的狀態,譬如中子星或黑洞。恆星的外部區域有時會在叫做超新星的巨大爆發中吹出來,這種爆發會使星系中的所有恆星相形之下顯得黯淡無光。一些恆星接近生命終點時產生的重元素就拋回到星系裡的氣體中去,為下一代恆星提供一些原料。我們自己的太陽包含大約2%這樣的重元素,因為它是第二代或第三代恆星,是由50億年前從包含有更早的超新星的碎片的旋轉氣體雲形成的。雲裡的大部分氣體形成了太陽或者噴到外面去,但是少量的重元素集聚在一起,形成了像地球這樣的、現在繞太陽公轉的物體。
地球原先是非常熱的,並且沒有大氣。在時間的長河中它冷卻下來,並從岩石中溢位的氣體裡得到了大氣。這早先的大氣不能使我們存活。因為它不包含氧氣,但有很多對我們有毒的氣體,如硫化氫(即是使臭(又鳥)蛋難聞的氣體)。然而,存在其他在這條件下能繁衍的生命的原始形式。人們認為,它們可能是作為原子的偶然結合形成叫做宏觀分子的大結構的結果而在海洋中發展,這種結構能夠將海洋中的其他原子聚整合類似的結構。它們就這樣地複製了自己並繁殖。在有些情況下複製有誤差。這些誤差多數使得新的宏觀分子不能複製自己,並最終被消滅。然而,有一些誤差會產生出新的宏觀分子,在複製它們自己時會變得更好。所以它們具有優點,並趨向於取代原先的宏觀分子。進化的過程就是用這種方式開始,它導致了越來越複雜的自複製的組織。第一種原始的生命形式消化了包括硫化氫在內的不同物質而放出氧氣。這樣就逐漸地將大氣改變到今天這樣的成份,允許諸如魚、爬行