,彈簧遊絲使指標軸復位,從而使指標指在“0”處。
熔鍊金屬摺疊
交流的磁場在金屬內感應的渦流能產生熱效應。這種加熱方法與用燃料加熱相比有很多優點,除課本所述外還有:加熱效率高,達到50~90%;加熱速度快;用不同頻率的交流可得到不同的加熱深度。這是因為渦流在金屬內不是均勻分佈的,越靠近金屬表面層電流越強,頻率越高這種現象越顯著,稱為“趨膚效應”。工業上把感應加熱依頻率分為四種:工頻(50赫);中頻(0。5~8千赫);超音訊(20~60千赫);高頻(60~600千赫)。工頻交流直接由配電變壓器提供;中頻交變電流由三相電動機帶動中頻發電機或用可控矽逆變器產生;超音訊和高頻交流由大功率電子管振盪器產生。
無心式感應熔爐的用途是熔鍊鑄鐵、鋼、合金鋼和銅、鋁等有色金屬。所用交流的頻率要隨坩鍋能容納的金屬質量多少來選擇,以取得最好的效果。例如:5千克的用20千赫,100千克的用2。5千赫,5噸的用1千赫以至50千赫。
冶煉鍋內裝入被冶煉的金屬,讓高頻交變電流透過線圈,被冶煉的金屬中就產生很強的渦流。從而產生大量的熱使金屬熔化這種冶煉方法速度快,溫度容易控制。能避免有害雜質混入被冶煉的金屬中,適於冶煉特種合金和特種鋼。
感應加熱法也廣泛用於鋼件的熱處理。如淬火、回火、表面滲碳等,例如齒輪、軸等只需要將表面淬火提高硬度、增加耐磨性,可以把它放入通有高頻交流的空心線圈中,表面層在幾秒鐘內就可上升到淬火需要的高溫,顏色通紅,而其內部溫度升高很少,然後用水或其他淬火劑迅速冷卻就可以了,其他的熱處理工藝,可根據需要的加熱深度選用中頻或工頻等。
歷史淵源摺疊
法拉第定律最初是一條基於觀察的實驗定律。後來被正式化,其偏導數的限制版本,跟其他的電磁學定律一塊被列麥克斯韋方程組的現代亥維賽版本。
法拉第電磁感應定律是基於法拉第於1831年所作的實驗。這個效應被約瑟。亨利於大約同時發現,但法拉第的發表時間較早。
見麥克斯韋討論電動勢的原著。
於1834年由波羅的海德國科學家海因裡希。楞次發現的楞次定律,提供了感應電動勢的方向,及生成感應電動勢的電流方向。
重要意義摺疊
法拉第的實驗表明,不論用什麼方法,只要穿過閉合電路的磁通量發生變化,閉合電路中就有電流產生。這種現象稱為電磁感應現象,所產生的電流稱為感應電流。
法拉第根據大量實驗事實總結出瞭如下定律:電路中感應電動勢的大小,跟穿過這一電路的磁通變化率成正比。
感應電動勢用e表示,即e=nΔΦ/Δt這就是法拉第電磁感應定律。
電磁感應現象是電磁學中最重大的發現之一,它揭示了電、磁現象之間的相互聯絡。法拉第電磁感應定律的重要意義在於,一方面,依據電磁感應的原理,人們製造出了發電機,電能的大規模生產和遠距離輸送成為可能;另一方面,電磁感應現象在電工技術、電子技術以及電磁測量等方面都有廣泛的應用。人類社會從此邁進了電氣化時代。??
其他資料摺疊
發現者摺疊
1820年h。c。奧斯特發現電流磁效應後,許多物理學家便試圖尋找它的逆效應,提出了磁能否產生電,磁能否對電作用的問題,1822年d。f。j。阿喇戈和洪堡在測量地磁強度時,偶然發現金屬對附近磁針的振盪有阻尼作用。1824年,阿喇戈根據這個現象做了銅盤實驗,發現轉動的銅盤會帶動上方自由懸掛的磁針旋轉,但磁針的旋轉與銅盤不同步,稍滯後。電磁阻尼和電磁驅動是最早發現的電磁感應現象,但由於沒有直接表現為感應電流,當時未能予以說明。
1831年8月,m。法拉第在軟鐵環兩側分別繞兩個線圈,其一為閉合迴路,在導線下端附近平行放置一磁針,另一與電池組相連,接開關,形成有電源的閉合迴路。實驗發現,合上開關,磁針偏轉;切斷開關,磁針反向偏轉,這表明在無電池組的線圈中出現了感應電流。法拉第立即意識到,這是一種非恆定的暫態效應。緊接著他做了幾十個實驗,把產生感應電流的情形概括為5類:變化的電流,變化的磁場,運動的恆定電流,運動的磁鐵,在磁場中運動的導體,並把這些現象正式定名為電磁感應。進而,法拉第發現,在相同條件下不同金屬導體迴路中產生